Calculation Policy
 Addition and Subtraction

Abstract

Aims This policy is designed to give children a smooth progression of skills from the early years to year 6. Each method leads in to the next so that previous learning is built upon and children learn consistent strategies that will enable them to master skills. Children should be taught according to their ability and not their age as it is vital that each stage is embedded and children develop a secure understanding of methods without any misconceptions. Visual examples are given and key vocabulary/references to important notes are highlighted in red so that the layout of calculations and the vocabulary we teach remains consistent throughout the school. Children should have opportunities to explore concrete, pictorial and abstract representations of calculation at all stages. This will ensure that they develop a secure understanding of addition and subtraction. Mastery examples are given for each stage as a reminder that all children must have opportunities to master their skills by solving problems and reasoning in a variety of contexts before moving on to the next stage.

Early Years

Early Learning Goal EYFS

- Mathematics Numbers: Children count reliably with numbers 1-20, place them in order and say which number is one more or one less than a given number.
- Using quantities and objects, they add and subtract two single- digit numbers and count on or back to find the answer.
Principles 1-1 correspondence of counting
 Counting objects in any order (left to right or right to left)
 Reciting number words in order Understanding that anything can be counted

Knowing that the final number name represents how many objects have been counted
-Subitising to 10 - When objects up to 10 are arranged in different ways children still recognise the quantity without counting e.g. children will see this as 2 sets of 4 and know the total is 8.
-Unitising 10- Children need to understand how to regroup whenever they have 10 in preparation for place value.
E.g. 10 cubes make a rod/10 bricks make a house

Mastery Example NCETM

I'm thinking of a number. I've subtracted 5 and the answer is 7. What was the number I was thinking of. Explain how you know.

I'm thinking of a number. I've added 8 and the answer is 19 . What number was I thinking of? Explain how you know?
All maths should be practical in EYFS unless children show evidence of mastery and are working at Greater depth. If introducing a number line, use alongside practical resources.

Stage 1

National Curriculum Expectations Year 1
-Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
-Represent and use number bonds and related subtraction facts within 20
-Add and subtract one-digit and two-digit numbers to 20, including zero - Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square$ - 9
-Provide a variety of practical experiences for adding and subtracting using real life and mathematical resources.
-Number bonds should be explored in a \square
 range of representations to develop instant recall to 10/20

- Drawing can be used with numbers to 20 as a support.
-Number lines should be introduced alongside practical representations.

Mastery Example NCETM
Write the numbers 1-5 in each row so that each row and column adds up to the same number, called the 'magic number'. What is the magic number?

Children should not be moved on to working with numbers above 20 unless there is evidence of mastery and that they are working at greater depth.

Stage 2

Mental strategies:

 Recall pairs of multiples of 10 which total 100National Curriculum Expectations Year 2
Solve problems with addition and subtraction:
-using concrete objects and pictorial representations,
including those involving numbers, quantities and measures
-applying their increasing knowledge of mental and written methods

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
-Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
-a two-digit number and ones/a two-digit number and tens/two two-digit numbers
-adding three one-digit numbers
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
-Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
-Develop number lines- children need to be taught to
use number lines efficiently
by counting on and back in steps and using knowledge of number bonds.

Children need to learn how to partition and recombine any 2 digit number.

- Teach bridging 100 e.g. $74+28$.

Mastery Example NCETM

An odd number + an odd number + an odd number = an even number. Is this sometimes, always or never true? Explain your reasoning.

Children should not move on to larger numbers or different methods unless there is evidence of mastery and children are working at greater depth.

St. Andrew's Primary School 2016

Numicon, Dienes, multi-link, counters, number lines, hundred squares, counting beads, abacus, place value counters, Lego, cars, dice, real world objects e.g. conkers, leaves, socks, gloves.

Addition

Vocabulary

add, more, make, sum, total, altogether, double, one more, two more ... ten more, How many more to make ...? How many more is ... than ...?
How much more is ...? take away, How many are left/left over? How many have gone? one less, two less, ten less ... How many fewer is ... than ...? How much less is ...? difference between, digit equals, is the same as, number bonds/pairs, missing number, number sentence, equals,

Addition and Subtraction LKS2

Stage 3

National Curriculum Expectations Year 3 Add and subtract numbers mentally, including:
A three-digit number and ones
A three-digit number and tens

- A three-digit number and hundreds
-Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction - Estimate the answer to a calculation and use inverse operations to check answers
-Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.
-Teach expanded column addition

- Teach expanded decomposition.
$271-155=116$
-200
100
100
100
100
10
-Teach inverse to 'undo' calculation and check answers.

Mastery Example NCETM

For positive integers are the following statements always, sometimes or never true.

- The sum of 2 odd numbers is even.
- The sum of 3 odd numbers is even.
- Adding 5 to a number ending in 6 will sum to a number ending in 1
- Adding 8 to a number ending in 2 will always sum to a multiple of 10

Explain why in each case.

Children should not be moved on to working with numbers above 999 or other methods unless they show mastery and are working at greater depth

Mental strategies

Recognise pairs of number which total 100 e.g. 32+68

Use number bond knowledge to find bonds to 1000

+/- near multiples of 10/100

Vocabulary-

Hundreds/Tens/On

(not units)

Stage 4

National Curriculum Expectations Year 4
Use knowledge of number bonds to find what must be added to decimals to make next whole number
-Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate

- Estimate and use inverse operations to check answers to a calculation
- Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Children should be extended to adding 3 two digit numbers or 3 three digit numbers as this is harder than bigger number

- Teach column decomposition.

Link to decimals in the context of money and measures
Number lines must be used for tim and money.
Children should also be introduced to rounding and estimating to check calculations
-Consolidate inverse to check answers to calculations

Write 3 calculations where you would use mental strategies and 3 where you apply a column method. Explain the decision you made for each calculation.

Children should be able to identify whether mental strategies could be used instead of column method. They should solve calculations with any 4 digit number and decimals to 1 dp in any context with resources of their choice to demonstrate mastery.

Numicon, Dienes, multi-link, counters, number lines, hundred squares, counting beads, abacus, place value counters, Lego, cars, dice, real world objects e.g. conkers, leaves, socks, gloves.

Addition

Subtraction

Vocabulary

Increase, decrease, calculation, strategy, equation, balance, equivalent to, integer, decimal, represents, decimal point, negative number, round, sequence, compare, strategy, reduce, boundary, relationship, consecutive,

Stage 5

National Curriculum Expectations Year 5
-Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
-Add and subtract numbers mentally with increasingly large numbers
Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

- Reasoning

Build on previous skills and develop understanding by giving children rich and varied problem solving tasks in a variety of contexts.

\quad Mastery Example NCETM

Stage 6

National Curriculum Expectations Year 6

-Use their knowledge of the order of operations to carry out calculations involving the four operations
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
-Develop efficient strategies to solve problems involving addition and subtraction
\bullet Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
-Children should continue to build on the strategies they have learnt in more complex problems/contexts.


```
easures
```


of method ensuring that it is efficient.

Use this number sentence to write down3 more pairs of decimal numbers to sum Vocabulary-
1.6+1.4=3

If I keep subtracting 3 from 397 I will get to 0 . Do you agree or disagree? Explain your reasoning

Nrich Example	Mastery Example WhiteRose
Kangaroo Subtraction Each of the letters K, A, N, G, R, O represent a different digit. KAN	
$-\frac{\text { GAR }}{00}$ What is the possible value of the number KAN?	Multiply the previous term by 3 and subtract 4

The second term of the sequence is 5
Find the difference between the first and fourth terms of the sequence

Children must demonstrate mastery in a wide range of contexts in order to be working at greater depth. They should be able to justify and reason using a wide range of technical vocabulary.

Possible resources

Numicon, Dienes, multi-link, counters, number lines, hundred squares, counting beads, abacus, place value counters, Lego, cars, dice, real world objects e.g. conkers, leaves, socks, gloves.

Addition

Concrete	Pictorial	Abstract
Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchangingthe 10 counters from one column for the next place value column until every column has been added. This can also be done with Dienes to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition.$\begin{aligned} & 20+5 \\ & 40+8 \\ & 60+13 \end{aligned}=73$ 536 +85 As the children move on, introduce decimals.$\frac{\underline{621}}{11}$ Money can be used here.$\begin{array}{\|rlllll} \hline 72.8 & & & & \\ +54.6 \\ \hline \mathbf{1 2 7 . 4} \\ \hline 11 & & & & & \\ \hline \end{array}$

Subtraction

Vocabulary

Increase, decrease, calculation, strategy, equation, balance, equivalent to, integer, decimal, represents, decimal point, negative number, round, sequence, compare, strategy, reduce, boundary, relationship, consecutive,
pattern, rule, logical

